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m&eknar  Today's Mal

e EXxcerpts from the Verizon 2015 Data Breach
Investigation Report:
o “170 million malware events”
o “70-90% of malware samples are unique to an
organization”
o “Signatures alone are dead”
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Traditional approaches no longer keep up!
Human analysis no longer scales

Signatures are easily fooled

We can engineer better ways to automatically tag
samples as malware or benign
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e Distinguishing good from bad: Classic Pattern
Recognition

e Other industries use pattern recognition with success

e lLarge databases of malware with associated labels exist!

Why not put them to work?
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We have all of these things!
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Input data (often denoted “x”) can be:

Executables /
compiled code...

1 ...Documents... _
3] ...or even scripts
: a2 ;
| ek A
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médknat  Machine Learn

e Every sample must have a label (often denoted “y")
e A label will determine if a sample is good or bad
e A label could also denote if a sample:
o Belongs to a family of malware;
o |s a certain kind of malware (adware, spyware,
trojan...)
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e A model (or classifier) takes in a sample and assigns it
Into an output class:

bool classifier(float *input, 1int N)

e Random forests, k-nearest neighbors, logistic regression,
support vector machines, neural networks, ...
e Parameters of the model are often denoted as “w”
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m&exnat Machine Learning =

e For a model to be useful, it must be “trained” to fit the
training data

min (f (w,z) —y)°

e The overall purpose of the model: to be able to
“‘generalize” to unseen samples

e A good model has the ability to classify samples it has
never seen before
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e Models don't often work directly on raw data

e Feature engineering distills raw inputs into a “feature
space”, directing the model towards important
information

e The most important part of machine learning!

e Better features almost always yield better models
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e Example features for an executable:
o Filesize

o Strings
o n-grams
m cat->{'c’, “a’, “t'}, {"ca’, “at’}, {"cat”}
m 0x68 0x65 0x6C 0x6C Ox6F ->
o {{0x68}, {Ox65}, ...},
e {{Ox68 0x65}, {0x65 0x6C}, ...},

e {{Ox68 0x65 0x6C 0x6C Ox6F}}
o Entropy of sections
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e Feature engineering is hard!

o Requires LOTS of domain knowledge

o Requires burdensome development and testing
e Are there ways around feature engineering?
o Yes!

o Lots of data

o Lots of computing power

o Recent advances in representation learning

algorithms
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e \What is "Deep Learning™?
o Learning parameters for a model that contains
several layers of nonlinear transformations:

f(x) = g3(92(91 (2)))

e Why Deep Learning?
o Very powerful models
o Responsible for redefining state-of-the-art in many
domains
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Object Recognition:

5 s

mite container ship  motor scooter pard
mite ship motor t ledpard
black widow lifeboat go-kart Jjaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat
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grille mushroom cherry adagascar cat
convertible | agaric dalmatian squirrel monkey
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man’'s-fingers currant howler monkey

Deep Learningy

Alex Krizhevsky, llya Sutskever, and Geoffrey E. Hinton.
"Imagenet classification with deep convolutional neural
networks." Advances in neural information processing
systems. 2012.
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All following examples are from Andrej Karpathy’s mind-blowing
blogpost at http://karpathy.github.io/2015/05/21/rmn-effectiveness/

...trained on Wikipedia entries:

Naturalism and decision for the majority of Arab Copyright was the succession of independence in
countries' capitalide was grounded by the Irish the slop of Syrian influence that was a famous
language by [[John Clair]], [[An Imperial Japanese German movement based on a more popular

Revolt]], associated with Guangzham's sovereignty. His servicious, non-doctrinal and sexual power post.
generals were the powerful ruler of the Portugal in the Many governments recognize the military housing

[[Protestant Immineners]], which could be said to be of the [[Civil Liberalization and Infantry Resolution
directly in Cantonese Communication, which followed a 265 National Party in Hungary]], that is

ceremony and set inspired prison, training. The sympathetic to be to the [[Punjab Resolution]]
emperor travelled back to [[Antioch, Perth, October (PJS)[http://www.humah.yahoo.com/guardian.
25|21]] to note, the Kingdom of Costa Rica, cfm/7754800786d17551963s89.htm Official
unsuccessful fashioned the [[Thrales]], [[Cynth's economics Adjoint for the Nazism, Montgomery
Dajoard]], known in western [[Scotland]], near ltaly to was swear to advance to the resources for those
the conquest of India with the conflict. Socialism's rule, was starting to signing a major

tripad of aid exile.]]
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All following examples are from Andrej Karpathy’s mind-blowing
blogpost at http://karpathy.github.io/2015/05/21/rmn-effectiveness/

...trained on Shakespeare:

PANDARUS:

Alas, | think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

| should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when | perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, | will make did behold your worship.

VIOLA:
I'll drink it.
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All following examples are from Andrej Karpathy’s mind-blowing
blogpost at http://karpathy.github.io/2015/05/21/rmn-effectiveness/

static void num_serial_ settings(struct tty struct *tty)

. . . {
...trained on Linux kernel source: it (tty — try)

disable single st p(dev);
pci disable spool (port);

f this error is set, we wi need anything right after that BSD. return 0;
}
static void action_new_function(struct s _stat info *wb)
{ static void do_command (struct seq_file *m, wvoid *v)
unsigned long flags; {
int lel idx bit = e->edd, *sys & ~((unsigned long) *FIRST COMPAT) ; int column = 32 << (cmd[2] & 0x80);
buf[0] = OxFFFFFFFF & (bit << 4); if (state)
min(inc, slist ->bytes); cmd = (int) (int_state ~ (in_8(&ch->ch flags) & Cmd) 2 2
printk (KERN_WARNING "Memory allocated %02x/%02x, " 1);
"original MLL instead \n"), else
min(min (multi run - s->len, max) * num data in), seq = 1;
frame pos, sz + first seq); for (1 = 0; 1 < 16; i++) {
div_u64 w(val, inb p); if (k & (1 << 1))
spin_unlock ( &disk->queue lock); pipe = (in use & UMXTHREAD UNCCA) +
mutex_unlock ( &s->sock->mutex) ; ((count & 0x00000000fffff£f£f8) & 0x000000f) << 8;
mutex unlock ( &func->mutex) ; if (count == 0)
return disassemble (info ->pending_bh) ; sub (pid, ppc_md.kexec handle, 0x20000000);

} pipe set bytes(i, 0);



1st Hidden Layer  h; = f (W x)
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e Trained by “backpropagation”
e (Calculate the loss - any differentiable measure of how
“close” the neural net output is to the target

e = L(f(x),y)

e “Backpropagate” this error to the previous layer to
calculate what the hidden units should have been
e Recursively repeat until the input layer is reached
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e \We want to iteratively update the weights with a
“gradient” - the direction to update the weights to
maximally decrease the loss
e Backpropagation directly computes the gradient of the
neural net weights with respect to the loss

e There are many variants of backpropagation
o Stochastic...

o Momentum...
o Second-order...
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e \What if the fully-connected structure is overkill?

e Can significantly simplify the model by sharing
parameters

e Define the transitions between layers as convolution
Instead of matrix multiplication
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e Defined as:

(f*xg)[n] = i | fm]g[n—m]

m=—0oo

e Maybe some animations would be more clear:
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(Thanks to Brian Amberg for contributing these animations to Wikipedia!)
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m&dknat  Convolution

Original Signal Filter Responses (5 Filter Bank)

Timé (s) . . - - ' . Timé (s)

Each filter detects frequencies at 500Hz, 1000Hz, 1500Hz, 2000Hz, and 2500Hz.
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e Great, what does all of this have to do with malware
detection??
e Convnets work well with data where there is spatial or
temporal structure
o Nearby pixels have a lot of meaning in image data;
o Nearby samples have a lot of meaning in audio data;
e |f we can assume some “local connectivity”, models are
easier to train
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e \Why are models easier to train when local connectivity is
assumed?
o Significantly reduces the number of parameters in the
model
e \Why is this important?
o Computing the output of the model is faster
o Updating parameters is faster
o There are fewer parameters, so the optimization
problem is probably easier
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Some examples of the spatial structure in x86 instructions:
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e A convolutional layer turns a d-dimensional sequence of j
steps into a h-dimensional sequence
e Each convolutional layer has an associated “window
size” and “stride”:
o Window size: how many contiguous steps from the
previous layer to consider

o Stride: how many steps to skip between steps in the
convolution

W

pif2knat Convolutio

LISA 20015
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m&eknat  Convolutional
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lllustration of window length and stride:

SRR, WDl

Window length: 4. Stride: 1 Window length: 3. Stride: 2
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e Fully-connected layers want an input of fixed size

e There is no constraint on:
o How long or short the disassembly will be!
o How many functions the disassembly will have!

e Padding the output to the largest conceivable size isn’t
the best way to go.

e Need a way to distill the variable-length sequence into a
fixed-length sequence the fully-connected layers can do
something useful with
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For each filter in the final convolutional layer:
e Find the maximum filter response across
all instruction and all functions;
e Pass this value to the next layer.

J O

Keep track of the (function,instruction) pair for
each filter. This bookkeeping allows
backpropagation to only flow through the
selected filters.

\

Y Temporal Max Pooling

eeoeo Conv z
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e The max pooling can be interpreted as a saliency-
detecting operation

e Backpropagation only flows backwards to instructions the
model deems “important”

e The model can be seen as combining instruction

segments as evidence to convict a sample as good or
bad.
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e Subsampled data uniformly from our larger dataset of
x86/x86-64 Windows PEs

e Disassembled ~2.2 million samples

e Discarded samples with too few (.NET) or too many (bad
disassembly) instructions

o ~500k “Good”

e ~3800k “Bad”

e Disassembly data is raw binary (not in human readable
mneumonics)

e |f an import is present and resolvable, the import name is
given
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e X806 instructions are variable length! How to deal with
this?
e Idea 1: Pad to 120 bits (15 byte maximum?)
o Training is very slow;
e Idea 2: Truncate to 64 bits
o Convergence speeds up somewhat
e |dea 3: Truncate to 16 bits, encode as one-hot
o No noticeable degradation from 64-bit truncation
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e Knowing what function a CALL is jumping into is very
important information to reverse engineers
e Make a small tweak to the first fully-connected layer:

O Output

Fully Connected

.»/‘. Fully Connected
/ /‘;’ N
NN
~NNNITS
O OO DDV OO

Import Features Temporal Max Pooling
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e Look through all of the data and get the import names

e Filter out the 8112 most common non-gibberish import
names (chosen somewhat arbitrarily)

e If there is an import that does not match one of the 8112
names, throw it in the “Misc. Import” bin

e Each sample has an 8113-dimensional vector

e Each non-zero element in this vector indicates the
presence of an import
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e \We can also use the import data on the input layer
e |n addition to the input dimensions used for the
instruction, we can have inputs for the import

e How to express the variable-length import name as a
fixed-length vector?

o Bag of characters

o “Temporal” bag of characters (so “ctime()” and
“emitc()” don’'t have the same representation)
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e Static disassembly is problematic - discovered code
paths are heuristic, and is difficult to trace out all
executable code

e Important information can be buried elsewhere in the
executable - how do we find it?

e Only applies to executable code - how to apply to scripts,
code running in VMs (Java, C#, ...)?

e Is training on raw bytes is tractable?
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Questions?

Also, a special thanks to Derek Soeder!



